Skip to content

Azure Synapse Analytics on POS

Case Studies

About Consumer Goods Company

The Client is an American multinational personal care corporation with a 2020 revenue of over $19 billion.


  • Power BI KPI Partners
  • Apache_Spark_KPI Partners
  • Devops-KPI Partners

Business Driver

Client's Commercial Sales and Retail Sales organizations struggled to integrate point of sale (POS) data sets from their channel business partners. Also, because the data was scattered across many systems, client users had no single place to go for their analytic needs.


Selection Process

The client selected KPI over multiple vendors through a rigorous RFP process. KPI's expertise in Hadoop, Azure, Power BI, and data and analytics, in general, was the key differentiator for the client. Also, KPI's blended shore model minimized cost and risk for the client.


What KPI Delivered

An Azure-based solution for the POS data coming from disparate source systems. This system reduced the ETL run time by over 80% from the client's prior system. It also reduced report execution time by over 90%.


Because Azure Synapse Analytics is a complete solution for blending data and reporting, it served as the perfect solution for the different personas across the organization. Because Synapse Studio was a new service, combining Spark and data warehousing capabilities, KPI delivered best practices and a re-usable architecture. KPI also held knowledge transfer workshops.


PoC Architecture

PoC Architecture


Business Benefits

  • A collaborative platform for different personas
  • Optimized process for reporting Point of Sale data
  • Data Standardization
  • Faster data processing with Azure Data Factory and Synapse Spark, which cut data load times by over 80%
  • A scalable, reusable, modern architecture
  • A universal format that allowed for easy integration with downstream systems, access by data scientists, as well as access by traditional data warehousing users. This format also supported incremental loads and slowly changing dimensions
  • A simple mechanism for reporting both raw and data warehousing data


Comments not added yet!

Your future starts today. Ready?